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ABSTRACT: An edge-magic labeling of a (p,q)-graph G is a bijection function f:V(G)∪E(G)	→   {1,2,…….., 
p+q} such that f(u) + f(v) + f(uv) = Cf is a constant for  every edge uv of G. If such an edge-magic labeling 

exists, G is said to be edge-magic and Cf is called the valence of f. Further, if  f(V(G)) = {1,2,………,p} then f is 

a super edge-magic labeling of G and G is said to be supermagic and if f(E(G)) = {1,2,………,q} then f is a 

supermagic labeling of G and G is said to be supermagic. 

This chapter is devoted to the study of the supermagic properties of certain classes of forests such as K1,m∪∪∪∪ 

K1,n , K1,2∪∪∪∪ K1,n Pm∪∪∪∪K1,n , 2Pn , K1,m∪∪∪∪2nP2. We are also interested in it since most of the forests referred to in 
this chapter, have each two components and thus show that bipartite graphs within even number of 

components may be supermagic. 

I. INTRODUCTION 

The subject of edge-magic labeling of graphs had its 

origins three decades ago in the work of Kotzig and 

Rosa [4,5] on what they called magic valuations of 

graphs, which are also commonly known as edge-magic 

total labeling[7]. Interest in these labeling has lately 
been rekindled by a paper on the subject due to Ringel 

and Llado[6]. Shortly after this, Enomoto, Llado, 

Nakamigawa and Ringel[3] defined a more restrictive 

form of edge-magic labelings namely super edge-magic 

labeling which Wallis[7] refers to as strong edge-magic 

total labeling. Analogously Akka and Warad[1] defined 

another restrictive form of edge-magic labeling, namely 

supermagic labelings. For a (p,q)-graph G = (V,E) a 

bijective function f:V∪E → {1,2,……..p+q} is an edge-
magic labeling of G if f(u) + f(v) + f(uv) is a constant cf 

(called valence of f) for any edge uvϵE. A graph that 

admits such a labeling is an edge-magic graph. In [3] 

Enomoto, Llado, Nakamigawa and Ringel defined an 
edge-magic labeling f of a graph G to be super edge-

magic if it has the extra property that 

f(V(G))	→{1,2,……..p} and said to be supermagic if 

f(E(G))→ {1,2,…… . . q}. Thus, a super edge-magic 

(supermagic) is a graph that admits a super edge-magic 

(supermagic) labeling. Lately, super edge-magic 

labeling and super edge-magic graphs have been called 

by Wallis [7] as strongly edge-magic total labeling and 

strongly super edge-magic total graphs respectively. In 

the similar way, as we did in the case of supermagic 

labeling and supermagic graphs. This chapter is mainly 

devoted to the study of the supermagic properties of 

certain classes of forests. We are also interested in it 

since most of the forests referred to in this chapter have 

each two components and thus show that bipartite 

graphs with an even number of components may be 

supermagic. The next characterization found in [2] 
has proved to be very useful and therefore we state it as 

Lemma 1.1. 

Lemma1.1: A (p,q)-graph G is supermagic if and only 

if there exists a bijective function f:V(G) → {q+1, q+2, 

…….p+q} such that the set S = {f(u) + f(v) : uv ϵ 

E(G)}which consists of q consecutive integers.  

In such a case, f extends to a supermagic labeling of G 

with valence λ = q + s where s = min(S) and S = {λ	 − 	(�)}����
. Moreover, ∑ �(�)���� = �� +�∈!(")#�$%. Therefore, it is clear that due to Lemma 1.1, it 

suffices to exhibit the vertex labeling in order to 

identify a supermagic graph.  

 Lemma1.2: [6] If G is a (p,q)-graph, where q is even, 

p + q = 2(mod4) and every vertex of G has odd degree, 

then G is not edge-magic.  

II. MAIN RESULTS  

This section is devoted to the study of the supermagic 

properties of certain classes of  forests K1,m ∪ K1,n , K1,2 

∪ K1,n, Pm ∪K1,n , 2Pn , K1,m ∪2nP2.  
Theorem2.1: If m is a multiple of n+1, then the forest 

K1,m∪ K1,n is super magic. 

 

et
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Proof:  Let V(F) = {x,y} ∪{ui /1 ≤ i ≤ m}∪{vi /1 ≤ i ≤ 
n} 

  and E(F) = {xui /1 ≤ i ≤ m}∪{yvi /1 ≤ i ≤ n}. Then 

consider the vertex labeling f:V(F)→{m+n+1, m+n+2, 

……….2(m+n+1)} such that f(x) = 2m+2n+1-α, f(y) = 

2m+2n+2, f(ui) = 2m+2n+4 – (α+2i)for i = 1,2, ……, m 

and  f(vi) = 2(m+n+1) – (α+1)(i+1) for i = 1,2, ….., n 

where  α = m/(n+1). Therefore by Lemma1.1, f extends 
to a supermagic labeling of F with valence 4m + 4n + 

3-α. 

Theorem2.2: The forest F ≅ K1,2∪ K1,n is supermagic if 
and only if n is a multiple of 3. Furthermore, there are 

essentially only two supermagic labelings of F. 

Proof:  Let the vertex and edge sets be V(F) = {u} ∪{vi 

/1 ≤ i ≤ n}∪{w1, w2, w3} 

and E(F) = {uvi /1 ≤ i ≤ n}∪{w1w2, w1w3}. 
Define f:V(F) = {n+3, n+4, …. 2n+6} be an arbitrary 

supermagic labeling of F such that f(u) =  α and {f(w1), 
(w2),(w3)} = {i,j,k} where i < j < k.   

Let S = {f(x) + (y) / xy ϵ E(F)}     and     L = {α+n+3, 

α+n+4, ……., α+2n+6}       where  |(| = ) + 2	*)�	|+| = ) + 4. Clearly S – { f(w1) + 

(w2), f(w1) + (w3)}= L – {α+α, α+i, α+j, α+k}.  Thus, 

{α+n+3, α+2n+6} ⊂ {2α, α+i, α+k}, since by 

removing 2α, α+i, α+j and α+k from L. We obtain S = 
{ f(w1)+ (w2), f(w1)+ (w3)} which is a set of consecutive 

integers minus two elements. This implies that {2n +6, 

n+3}⊂{α, i, j}. 
Now we prove that i = 2n+6 and k = n+3. To 

do this, it suffices to verify that α ∉ {2n+6, n+3}. Let β 

= f(w1) then since degw1 = 2, degu = n and f(u) = α. It 
follows by Lemma1.1 that 

-.+/() − 1) + 0 = () + 2)� + 1) + 22 2$345

6�347
 

where s = min(S). Hence  
7384$�3475$ + /() − 1) +0 − (34$)(34�)$ = () + 2)� 

∴ � = ()$ + 9) + 17) + /() − 1) + 0) + 2 . 
Now suppose to the contrary that α = n+3. Then �	 = <34$+ 2) + 7, so n+2 divides  β which gives that β 

= n+2. This in turn leads us to conclude that s  = 2n+8. 

Furthermore, the vertex u which is labeled n+3 cannot 

be adjacent to the vertices labeled n+4 or n+5; for 

otherwise s = 2n+7 or 2n+8.  
Thus, {n+4, n+5, 2n+6} = {i, j, k} which is impossible. 

Next, assume to the contrary that α = 2n+6.  
 

 

Then � = <=734$ + 3) + 7 and consequently n+2 divides 

β-3 which gives that β - 3 = 0 since n+2 ≥ 3 and n+3 ≤ 

β ≤ 2n+6. Thus, β = 3 and s = n+3. Then either f(w2) = 
n+3 or f(w3) = n+3. This gives that f(w1) + f(w2) = n+6 

or f(w1) + f(w3) = n+6 and n+6 < s = 2n+6 which is a 

contradiction. 

 Finally, since the vertices w2 and w3 are 

indistinguishable, we discuss the following three cases. 

Case I: If �(?1) = 2)+6, f(?2) = )+3 and  f(?3) = @, 
then {3)+9, @+2)+6} = {α+@, 2α}. Thus, 3)+9 = α+@ 
and @	+ 2) + 6 = 2α gives that α	 = 	 A37 + 5. Hence n is 

a multiple of 3. Therefore, by taking	α	 = 	 A37 + 5, f(w1) 

= 2n+6, f(w2)= n+3 and f(w3)= (4n/3) + 4. 

 We get the same supermagic labeling of F as the proof 

of Theorem 2.1. 

Case II: If f(w1) = n+3, f(w2) = 2n+6 and  f(w3) = j, then 

{3n+4, j+n+3} ={α+j, 2α}. Thus, 3n+9 = α+j and j + n 

+ 3 = 2α give that	α	 = 	 C37 + 4. Hence n is a multiple 

of 3. Now it is easy to verify that if we take	�(D) =C37 + 4, f(w1) = n+3, f(w2)= 2n+6 and  �(?7) = A37 + 5, 

we get the same supermagic labeling of F by assigning 

the remaining labels to all other vertices of F. 

Case III: If f(w1) = j, f(w2) = 2n+6 and,  f(w3) = n+3 

then {2n+6+j, j+n+3} ={α+j, 2α}. Now since α < 

2n+6, it follows that 2n+6+j ≠ α+j. Thus 2n+6+j = 2α 

and j+n+3 =α+j.  Hence j = 0 > n+3 which is 
impossible. 

Theorem 2.3: For every two integers m ≥ 4 and n ≥ 1, 

the forest F ≅ Pm∪K1,n is supermagic. 

Proof:  Let V(F) = {ui/1 ≤ i ≤ m}∪{ vi/1 ≤ i ≤ n}∪{w}  
and  

                     E(F) = {ui ui+1 /1 ≤ i ≤ m-1}∪{ viw/1 ≤ i ≤ 
n}. We consider four cases for the vertex labeling f: 

V(F) →{m+n, m+n-1,………2m+2n}. 

Case I: For m ≡ 0(mod4), let 

 

Fig. 1. 
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�#DE% =

FGG
GGG
H
GGG
GGI

		

3J + 2)2 																												��	@ = 1																																													3J + 2) − 42 																								��	@ = 3																																													
2J + ) − 2� + 2								��	@ = 4�	*)�	1 ≤ � ≤ J4 																3J + 2) − 4� − 42 																		��	@ = 4� + 1	*)�	1 ≤ � ≤ (J − 4)4 	
2J + ) − 2� − 1								��	@ = 4� + 2	*)�	0 ≤ � ≤ J − 44 					3J + 2) − 4� − 22 																		��	@ = 4� + 3	*)�	1 ≤ � ≤ J − 44 					

M 

�(��) = 2J + 2) − � + 1																		��		1 ≤ � ≤ )   and �(?) = 3J + 2) − 22 . 
Case II: For	J ≡ 1	(JO�	4), let 

 

Fig. 2. 

�#DE% =
FG
GH
GG
I2J + ) − 2� + 2																					��	@ = 4�	*)�	1 ≤ � ≤ J − 14 												3J + 2) − 4� − 42 																	��	@ = 4� + 1	*)�	0 ≤ � ≤ (J− 1)4 	
2J + ) − 2� − 1																				��	@ = 4� + 2	*)�	0 ≤ � ≤ J − 54 					3J + 2) − 4� − 52 																	��	@ = 4� + 3	*)�	0 ≤ � ≤ J − 54 				

M 

�(��) = 2J + 2) − � + 1		��	1 ≤ � ≤ )	, �(?) = 3J + 2) − 12 . 
Case III: For	m ≡ 2(mod	4), let 

�#DE% =

FGG
GGG
H
GGG
GGI

J+ )																									��	@ = 1																																												J + ) + 2																	��	@ = 3																																													3J + 2) + 4�2 										��	@ = 4�	and	1 ≤ � ≤ J − 24 							
J + ) + 2�	 + 2							��	@ = 4� + 1	and	1 ≤ � ≤ J − 24	3J + 2) + 4� + 62 				��	@ = 4� + 2	and	0 ≤ � ≤ J − 64J + ) + 2�	 + 1									��	@ = 4� + 3	and	1 ≤ � ≤ J− 64J + ) + 1																		��	@ = J																																												

M 
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�(��) = 2J + 2) − � + 1,							��		1 ≤ � ≤ )				and											�(?) = 3J + 2)2  

                                             
Fig. 3. 

Case IV: For	J ≡ 3(mod	4), let  

�#DE% =

FGG
GGG
GH
GGG
GGG
I 3J + 2) + 12 																	��	@ = 1																																																					3J + 2) − 32 																	��	@ = 3																																																						
2J + ) − 2�	 + 2										��	@ = 4�	and	1 ≤ � ≤ J − 34 																	3J + 2) − 4� − 32 							��	@ = 4� + 1	and	1 ≤ � ≤ J − 34 									
2J + ) − 2� − 1										��	@ = 4� + 2	and	0 ≤ � ≤ J − 74 									3J + 2) − 4� − 12 							��	@ = 4� + 3	and	1 ≤ � ≤ J − 34 										3J + 2) + 32 															��	@ = J− 1																																																																																						

M				 

		�(��) = 2J + 2) − � + 1,			��		1 ≤ � ≤ )					and										�(?) = 7V4$3=�$ 		                                                          
Therefore, by Lemma 1.1, f extends to a supermagic labeling of F with valence  

																			WX = Y7J + 6) + 22 														��			J ≡ 	2(mod4)													
4J + 3) − ZJ2 [ 									otherwise																										

M 

 
Fig. 4. 
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The next class of forest that we study is 2Pn . Before that, we have proved that the forest  K1,2∪ K1,n is a supermagic 
if and only if n is a multiple of 3, (Theorem 2.2). Hence the forest 2P3 is not supermagic. However, it is 

complimentary edge-magic by labeling   the vertices of one P3 with 10 – 2 – 9 and one of the other P3 with 8 – 7 – 6, 
and letting the valency be 16. Finally, notice that D G Akka and Nanda Warad [1] proved that the forest nP2 is super 

edge-magic if and only if n is odd. 

Theorem 2.4: The forest F ≅ 2Pn (n>1) is supermagic if and only if n ≠ 2 or 3. 

Proof:  Suppose that n ≥ 4 and define the forest F ≅ 2Pn with 

 V(F) = {ui/1 ≤ i ≤ n}∪{ vi/1 ≤ i ≤ n} and  

                     E(F) = {ui ui+1 /1 ≤ i ≤ n-1}∪{ vivi-1/1 ≤ i ≤ n-1}  
We consider cases according to the possible values of the integer n.                              

Case I: For n = 9, Define f:V(F)	→ {17,18,…….., 34} be the vertex  labeling such that 	#�(D�)%���c ={25,18, 28, 21, 31, 22, 29, 19, 26}	and						  
 #�(��)%���c = {27, 17, 30, 20, 34, 24, 33, 23, 32} 

 
Fig. 5.(a) 

Case II: For n = 4k, where k is a positive integer, let f:V(F)	→{8k-1, 8k,…….., 16k-2} be the vertex labeling such 

that  

�#DE% =
FGH
GI15e																											��	@ = 1																																																	13e − � + 2												��	@ = 2� − 1	and	2 ≤ � ≤ e												13e + � − 1											��	@ = 2� − 1	and	e + 1 ≤ � ≤ 2e			9e − � + 1												��	@ = 2�	and	1 ≤ � ≤ e																						9e + �																			��	@ = 2�	and	e + 1 ≤ � ≤ 2e												

M 
 

 

Fig. 5(b) 

�#�E% = Y12e − � + 2									��	@ = 2� − 1	and				1 ≤ � ≤ e + 1	12e + � − 1									��	@ = 2� − 1	and	e + 2 ≤ � ≤ 2e		8e − � + 1											��	@ = 2�	and	1 ≤ � ≤ e																				8e + �																			��	@ = 2�	and	e + 1 ≤ � ≤ 2e										 M 
Case III: For n = 12k – 7 where k is a positive integer, let  f:V(F)	→{24k-15, 24k-14,…….., 48k - 30} and 

f:E(F)	→{1,2,……….., 24k - 16} be the vertex  labeling and edge labeling such that  

�#DE% = Y 36e + 3� − 25																					��	@ = 2� − 1	and				1 ≤ � ≤ 3e − 1	24e − 3�																																��	@ = 2� − 1	and		3e ≤ � ≤ 6e − 3	24e + 3� − 17																						��	@ = 2�	and	1 ≤ � ≤ 3e − 2													42e − 3� − 25																							��	@ = 2�	and	3e − 1 ≤ � ≤ 6e − 4		M 
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Fig. 6. (2P5). 

�#�E% =
FGG
GH
GGG
I24e + 3� − 18															��	@ = 2� − 1	*)�				1 ≤ � ≤ 3e − 2												36e + 3� − 23																��	@ = 2�	*)�		1 ≤ � ≤ 3e − 2																						33e + 3� − 23																��	@ = 6e + 6� − 9	and	1 ≤ � ≤ e															45e + 3� − 30																��	@ = 6e + 6� − 8	and	1 ≤ � ≤ e																33e + 3� − 24																��	@ = 6e + 6� − 7and	1 ≤ � ≤ e																45e + 3� − 28																��	@ = 6e + 6� − 6	and	1 ≤ � ≤ e − 1								33e + 3� − 22															��	@ = 6e + 6� − 5	and	1 ≤ � ≤ e − 1								45e + 3� − 29															��	@ = 6e + 6� − 4	and	1 ≤ � ≤ e − 1							

M 

Case IV: For n = 12k – 6 where k is a positive integer, let  f:V(F)	→{24k-13, 24k-12,…….., 48k - 26} and 

f:E(F)	→{1,2,……….., 24k - 14} be the vertex  and edge labelings such that  

�#DE% = Y36e + 3� − 22																					��	@ = 2� − 1	and				1 ≤ � ≤ 3e − 1	54e − 3� − 27																					��	@ = 2� − 1	and		3e ≤ � ≤ 6e − 3		24e + 3� − 14																					��	@ = 2�	and	1 ≤ � ≤ 3e − 2													42e − 3� − 22																					��	@ = 2�	and	3e − 1 ≤ � ≤ 6e − 3			M 

 

Fig. 7. (2P6). 

�#�E% =
FGG
GH
GGG
I24e + 3� − 15																	��	@ = 2� − 1	and				1 ≤ � ≤ 3e − 2												36e + 3� − 20																	��	@ = 2�	and		1 ≤ � ≤ 3e − 2																						33e + 3� − 20																	��	@ = 6e + 6� − 9	and	1 ≤ � ≤ e															45e + 3� − 27																	��	@ = 6e + 6� − 8	and	1 ≤ � ≤ e − 1							33e + 3� − 21																	��	@ = 6e + 6� − 7	and	1 ≤ � ≤ e															45e + 3� − 25																	��	@ = 6e + 6� − 6	and	1 ≤ � ≤ e − 1							33e + 3� − 19																	��	@ = 6e + 6� − 5	and	1 ≤ � ≤ e − 1							46e + 3� − 26																	��	@ = 6e + 6� − 4	and	1 ≤ � ≤ e − 1							48e − � − 25																			��	@ = 12e + 2� − 10and	1 ≤ � ≤ 2										

M 

Case V: For n = 12k – 5 where k is a positive integer, let f:V(F)	→{24k-11, 24k-10,…….., 48k - 22} be the vertex  

labeling such that  

�#DE% = 		Y24e + 3� − 24																			��	@ = 2� − 1	and				1 ≤ � ≤ 3e − 1				42e − 3� − 26																			��	@ = 2� − 1	and		3e ≤ � ≤ 6e − 2			36e + 3� − 28																			��	@ = 2�	and	1 ≤ � ≤ 3e − 1														42e − 3� − 33																				��	@ = 2�	and	3e ≤ � ≤ 6e − 3											 M 
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�#�E% =
FGG
GH
GGG
I 36e + 3� − 29																			��	@ = 2� − 1	and				1 ≤ � ≤ 3e − 1										24e + 3� − 22																				��	@ = 2�	and		1 ≤ � ≤ 3e − 2																					33e + 3� − 27																			��	@ = 6e + 6� − 8	and	1 ≤ � ≤ e														45e + 3� − 33																			��	@ = 6e + 6� − 7	and	1 ≤ � ≤ e − 1						33e + 3� − 28																			��	@ = 6e + 6� − 6	and	1 ≤ � ≤ e														45e + 3� − 31																			��	@ = 6e + 6� − 5	and	1 ≤ � ≤ e − 1						33e + 3� − 26																		��	@ = 6e + 6� − 4	and	1 ≤ � ≤ e − 1						45e + 3� − 32																		��	@ = 6e + 6� − 3	and	1 ≤ � ≤ e − 1						48e − � − 31																				��	@ = 12e + 2� − 9	and	1 ≤ � ≤ 2											

M 

 

Fig. 8. (2P7). 

Case VI: For n = 12k – 2 where k is a positive integer, let f:V(F)	→{24k-5, 24k-4,…….., 48k - 10} be the vertex  

labeling such that            

�#DE% = Y36e + 3� − 10											��	@ = 2� − 1	and				1 ≤ � ≤ 3e																	54e − 3� − 8														��	@ = 2� − 1	and		3e + 1 ≤ � ≤ 6e − 1	24e + 3� − 7														��	@ = 2�	and	1 ≤ � ≤ 3e − 1																				42e − 3� − 8													��	@ = 2�	and	3e ≤ � ≤ 6e − 1																	 M 

 

Fig. 9. (2P10). 

�#�E% =
FGG
GH
GGG
I38e + 3� − 9																		��	@ = 2� − 1	*)�				1 ≤ � ≤ 3e − 1															24e + 3� − 6																		��	@ = 2�	*)�		1 ≤ � ≤ 3e − 1																									45e + 3� − 11																��	@ = 6e + 6� − 7	and	1 ≤ � ≤ e																		33e + 3� − 8																		��	@ = 6e + 6� − 6	and	1 ≤ � ≤ e																		45e + 3� − 12																��	@ = 6e + 6� − 5and	1 ≤ � ≤ e																				33e + 3� − 8																		��	@ = 6e + 6� − 4	and	1 ≤ � ≤ e																			45e + 3� − 10																��	@ = 6e + 6� − 3	and	1 ≤ � ≤ e																			33e + 3� − 9																	��	@ = 6e + 6� − 2	and	1 ≤ � ≤ e																		

M 

Case VII: For n = 12k – 1 where k is a positive integer, let  f:V(F)	→{24k-3, 24k-2,…….., 48k - 6} be the vertex  

labeling such that  

              

Fig. 10. (2P11). 
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�#DE% = Y36e + 3� − 7														��	@ = 2� − 1	and				1 ≤ � ≤ 3e														54e − 3� − 3														��	@ = 2� − 1	and		3e + 1 ≤ � ≤ 6e					24e + 3� − 5															��	@ = 2�	and	1 ≤ � ≤ 3e																									42e − 3� − 4														��	@ = 2�	and	3e + 1 ≤ � ≤ 6e − 1							 M 

�#�E% =
FGG
GH
GGG
I 24e + 3� − 6																							��		@ = 2� − 1	and				1 ≤ � ≤ 3e												36e + 3� − 5																							��		@ = 2�	and		1 ≤ � ≤ 3e − 1														45e − 4																																��		@ = 6e																																																				33e + 3� − 7																							��		@ = 6e + 6� − 5	and	1 ≤ � ≤ e								45e + 3� − 8																							��		@ = 6e + 6� − 4	and	1 ≤ � ≤ e								33e + 3� − 5																							��		@ = 6e + 6� − 3	and	1 ≤ � ≤ e								45e + 3� − 6																							��		@ = 6e + 6� − 2	and	1 ≤ � ≤ e									33e + 3� − 6																						��		@ = 6e + 6� − 1	and	1 ≤ � ≤ e									45e + 3� − 4																						��		@ = 6e + 6�	and	1 ≤ � ≤ e − 1									

M 

Case VIII: For n = 12k + 1 where k is a positive integer, let f:V(F)	→{24k+1, 24k+2,…….., 48k +2} be the vertex  

labeling such that  

�#DE% = Y24e + 3� − 2											��		@ = 2� − 1	and				1 ≤ � ≤ 3e + 1															42e − 3� + 4											��		@ = 2� − 1	and		3e + 2 ≤ � ≤ 6e + 1							36e + 3� − 1											��		@ = 2�	and	1 ≤ � ≤ 3e																																		54e − 3� + 3										��		@ = 2�	and	3e + 1 ≤ � ≤ 6e																							 M 
 

�#�E% =
FGG
GH
GGG
I 36e + 3� − 2																				��		@ = 2� − 1	and				1 ≤ � ≤ 3e						24e + 3� − 1																				��		@ = 2�	and		1 ≤ � ≤ 3e																45e + 3� − 1																			��		@ = 6e + 6� − 5	and			1 ≤ � ≤ e33e + 3� − 2																			��		@ = 6e + 6� − 4	and	1 ≤ � ≤ e		45e + 3� − 2																				��		@ = 6e + 6� − 3	and	1 ≤ � ≤ e		33e + 3�																												��		@ = 6e + 6� − 2	and	1 ≤ � ≤ e		45e + 3�																						��	@ = 6e + 6� − 1	and	1 ≤ � ≤ e − 133e + 3� − 1																					��		@ = 6e + 6�	and	1 ≤ � ≤ e										48e − � + 2																						��		@ = 12e + 2� − 3	and	1 ≤ � ≤ 2

M 

                

 

Fig. 11. (2P13). 

Case IX: For n = 12k + 2 where k is a positive integer, let  f:V(F)	→{24k+3, 24k+4,…….., 48k +6} be the vertex  

labeling such that  

�#DE% =
FGH
GI36e + 3� − 2												��	@ = 2� − 1	and				1 ≤ � ≤ 3e + 1															42e − 3� + 10										��	@ = 2� − 1	and		3e + 2 ≤ � ≤ 6e + 1							24e + 3� + 1													��	@ = 2�	and	1 ≤ � ≤ 3e																																		42e − 3� + 6													��	@ = 2�	and	3e + 1 ≤ � ≤ 6e + 1					

										
M 
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�#�E% =

FGG
GGH
GGG
GI36e + 3� + 3																		��	@ = 2� − 1	and				1 ≤ � ≤ 3e													24e + 3� + 2																	��	@ = 2�	and		1 ≤ � ≤ 3e + 1																45e − � + 8																					��	@ = 6e + 2� − 1	and			1 ≤ � ≤ 2						33e + 3� + 1																		��	@ = 6e + 6� − 2	and	1 ≤ � ≤ e								45e + 3� + 6																			��	@ = 6e + 6� − 1	and	1 ≤ � ≤ e								33e + 3� + 3																			��	@ = 6e + 6�	and	1 ≤ � ≤ e − 1						45e + 3� + 5																		��	@ = 6e + 6� + 1	and	1 ≤ � ≤ e							33e + 3� + 5																		��	@ = 6e + 6� + 2	and	1 ≤ � ≤ e − 145e + 3� + 7																		��	@ = 6e + 6� + 3	and	1 ≤ � ≤ e − 136e − � + 5																				��	@ = 12e + 2� − 2	and	1 ≤ � ≤ 2.					

M 

     

 

Fig. 12. (2P14). 

Case X: For n = 12k + 3 where k is a positive integer, let  f:V(F)	→{24k+5, 24k+6,…….., 48k +10} be the vertex  

labeling such that  

�#DE% = Y 36e + 3� + 5														��	@ = 2� − 1	and				1 ≤ � ≤ 3e + 1											54e − 3� + 15												��	@ = 2� − 1	and		3e + 2 ≤ � ≤ 6e + 2			24e + 3� + 3															��	@ = 2�	and	1 ≤ � ≤ 3e + 1																							48e − 3� + 10													��	@ = 2�	and	3e + 2 ≤ � ≤ 6e + 1												M 

�#�E% =

FGG
GGH
GGG
GI24e + 3� + 2																	��	@ = 2� − 1	and				1 ≤ � ≤ 3e + 2								36e + 3� + 7																			��	@ = 2�	and		1 ≤ � ≤ 3e																								45e − � + 12																		��	@ = 6e + 2�	and			1 ≤ � ≤ 2																43e + 3� + 4																		��	@ = 6e + 6� − 1	and	1 ≤ � ≤ e										45e + 3� + 10																��	@ = 6e + 6�	and	1 ≤ � ≤ e																	33e + 3� + 6																		��	@ = 6e + 6� + 1	and	1 ≤ � ≤ e − 145e + 3� + 9																	��	@ = 6e + 6� + 2	and	1 ≤ � ≤ e											33e + 3� + 8																	��	@ = 6e + 6� + 3	and	1 ≤ � ≤ e − 1			45e + 3� + 11															��	@ = 6e + 6� + 4	and	1 ≤ � ≤ e − 1			36e − � + 8																			��	@ = 12e + 2� − 1	and	1 ≤ � ≤ 2	.							

M 

         

 

Fig. 13. (2P15). 

Case XI: For n = 12k + 9 where k is a positive integer, let  f:V(F)	→{24k+17, 24k+18,…….., 48k +34}.    

�#DE% = Y36e + 3� + 23															��	@ = 2� − 1	and				1 ≤ � ≤ 3e + 3												54e − 3� + 42															��	@ = 2� − 1	and		3e + 4 ≤ � ≤ 6e + 5				24e + 3� + 15															��	@ = 2�	and	1 ≤ � ≤ 3e + 2																								42e − 3� + 31															��	@ = 2�	and	3e + 2 ≤ � ≤ 6e + 4													 M 
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�#�E% =

FGG
GGH
GGG
GI24e + 3� + 14																				��	@ = 2� − 1	and				1 ≤ � ≤ 3e + 2				36e + 3� + 25																				��	@ = 2�	and		1 ≤ � ≤ 3e + 3														33e − � + 25																						��	@ = 6e + 2� + 3	and			1 ≤ � ≤ 2					45e + 3� + 30																		��	@ = 6e + 6� + 2	and	1 ≤ � ≤ e + 1	33e + 3� + 23																		��	@ = 6e + 6� + 3	and	1 ≤ � ≤ e									45e + 3� + 32																		��	@ = 6e + 6� + 4	and	1 ≤ � ≤ e									33e + 3� + 22																		��	@ = 6e + 6� + 2	and	1 ≤ � ≤ e								45e + 3� + 36																		��	@ = 6e + 6� + 6	and	1 ≤ � ≤ e									33e + 3� + 24																		��	@ = 6e + 6� + 7	and	1 ≤ � ≤ e − 136e − � + 26																				��	@ = 12e + 2� + 5	and	1 ≤ � ≤ 2						

M 

 

Fig. 14. (2P21). 

Therefore, by Lemma 1.1, f extends to a supermagic labeling of F with valence  

7n – 1 when n = 4k and 7n otherwise. 

Theorem2.5: The forest F ≅ K1,m∪2nP2 where m and n are positive integers, is supermagic. Furthermore if m + 2n 

and 2n + 3 are relatively prime then only the valence 2m + 9n + 4 and 3m + 9n + 1 are attained by the supermagic 

labeling of F. 

Proof: Let F ≅ K1,m∪2nP2  be a (p,q) forest such that  

V(F) = {u} ∪{vi/1 ≤ i ≤ m} ∪ {wi/1 ≤ i ≤ 4n}   

and E(F) = {uvi/1 ≤ i ≤ m} ∪ {wi w2n+i /1 ≤ i ≤ 2n}   

Then f, g: V(F)	→{m + 2n + 1,…………, 2m + 6n + 1} be the vertex  labelings of F with  

                   

Fig. 15. 

�(f) =
FG
HG
I2J + 5) + 1																							��	f = D																																											2J + 4) − � + 1																	��	f = �� 	and		1 ≤ � ≤ J												2J + 6) + 2 − �																	��	f = ?� 	and	1 ≤ � ≤ )													2J + 6) − �	 + 1																	��	f = ?� 	and	) + 1 ≤ � ≤ 2)		J + 5) − �	 + 1																			��	f = ?� 	and	2) + 1 ≤ � ≤ 3)J + 7) − �	 + 1																		��	f = ?� 	and	3) + 1 ≤ � ≤ 4)

M 

�(f) =
FG
HG
IJ + 3) + 1																					��	f = D																																																		2J + 6) − � + 2											��	f = �� 	and		1 ≤ � ≤ J																				J + 6) − 2� + 2										��	f = ?� 	and	1 ≤ � ≤ )																					J + 8) − 2�	 + 3										��	f = ?� 	and	) + 1 ≤ � ≤ 2)											J + ) + �	 + 1														��	f = ?� 	and	2) + 1 ≤ � ≤ 3)									J − ) + �																							��	f = ?� 	and	3) + 1 ≤ � ≤ 4)									

M 
Thus, by Lemma 1.1, f and g extends to supermagic labelings of F with valences 4m+9n+2 and 3m+9n+3 

respectively. 
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We have made it clear that the above two valences are the only possible ones when m + 2n and 2n+1 are relatively 

prime, let λ be the valence of supermagic labeling h of F. Then        

																λ = (J − 1)g� + ℎ(D)i + ∑ �j4�����  

																				= 3J + 10) + 3 + ℎ(D) + (2) + 1)g) + 1 −J − 2) − ℎ(D)iJ + 2)  

This gives that there exists an integer α such that  

α(m + 2n) = 1 + n - m – 2n – h(u). Now since 1 ≤ h(w) ≤ p it follows that α is -1 or -2 values that lead to the 
valences 4m + 9n + 2 and 3m + 9n + 3 respectively. 
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